000103643 001__ 103643 000103643 005__ 20231020044956.0 000103643 0247_ $$2doi$$a10.7936/6rxs-103643 000103643 037__ $$aRDM 000103643 041__ $$aeng 000103643 245__ $$aPlausibility of lunar crustal magmatism producing strong crustal magnetism 000103643 260__ $$bWashington University in St. Louis 000103643 269__ $$a2023-10-19 000103643 336__ $$aDataset 000103643 518__ $$d2020-02-25/2021-05-24$$oSubmitted 000103643 520__ $$aThe Moon generated a long-lived core dynamo magnetic field, with intensities at least episodically reaching ~10­­–100 µT during the period prior to ~3.56 Ga.  While magnetic anomalies observed within impact basins are likely attributable to the presence of impactor-added metal, other anomalies such as those associated with lunar swirls are not as conclusively linked to exogenic materials. This has led to the hypothesis that some anomalies may be related to magmatic features such as dikes, sills, and laccoliths. However, basalts returned from the Apollo missions are magnetized too weakly to produce the required magnetization intensities (>0.5 A/m).  Here we test the hypothesis that subsolidus reduction of ilmenite within or adjacent to slowly cooled mafic intrusive bodies could locally enhance metallic FeNi contents within the lunar crust.  We find that reduction within hypabyssal dikes with high-Ti or low-Ti mare basalt compositions can produce sufficient FeNi grains to carry the minimum >0.5 A/m magnetization intensity inferred for swirls, especially if ambient fields are >10 μT or if fine-grained Fe-Ni metals in the pseudo-single domain grain size range are formed.  Therefore, it is plausible that the magnetic sources responsible for long sublinear swirls like Reiner Gamma and Airy may be magmatic in origin.  The results of this study will help guide interpretations of lunar crustal field data acquired by future rovers that will traverse lunar magnetic anomalies. 000103643 536__ $$oNational Aeronautics and Space Administration$$qhttps://ror.org/027ka1x80$$rROR$$c80NSSC20K0640 000103643 540__ $$aCreative Commons Attribution (CC BY) 4.0 International$$uhttps://creativecommons.org/licenses/by/4.0/ 000103643 650__ $$aEarth and related environmental sciences 000103643 6531_ $$aIlmenite reduction experiments 000103643 6531_ $$alunar swirls 000103643 6531_ $$alunar magnetic anomalies 000103643 6531_ $$athermoremanent magnetization 000103643 655__ $$aTabular 000103643 655__ $$aImage 000103643 7001_ $$aLiang, Yuanyuan$$1https://orcid.org/0009-0007-1802-3242$$uWashington University in St. Louis$$4https://ror.org/01yc7t268$$5ROR 000103643 7001_ $$aTikoo, Sonia$$1https://orcid.org/0000-0001-9524-8284$$uStanford University$$4https://ror.org/00f54p054$$5ROR 000103643 7001_ $$aKrawczynski, Michael$$1https://orcid.org/0009-0007-0254-4000$$uWashington University in St. Louis$$4https://ror.org/01yc7t268$$5ROR 000103643 720__ $$uWashington University in St. Louis$$4https://ror.org/01yc7t268$$5ROR$$eResearcher$$7Personal 000103643 8564_ $$ePublic$$01$$92f6592a5-c978-4eaf-b1d0-6f308da117ab$$s995923$$2d2feea53c111379f4ef21d8e30747ab0$$uhttps://data.library.wustl.edu/record/103643/files/figures_and_tables.zip$$ySupplementary figures and tables 000103643 8564_ $$ePublic$$01$$9951d6eba-3b37-46eb-98ab-50a4126322a5$$s101481$$2f39f9fb7c167ab3b998081682417550b$$uhttps://data.library.wustl.edu/record/103643/files/RawEPMAData.zip$$yRaw EPMA Data 000103643 8564_ $$ePublic$$01$$9dafd6315-69e2-4d5a-a5a9-4f87983cd8fd$$s216150$$23dbee730a6c0f76e03c6051943379cc3$$uhttps://data.library.wustl.edu/record/103643/files/RawRockmagData.zip$$yRaw Rock Magnetization Data 000103643 8564_ $$ePublic$$02$$978545361-4bfb-47b7-9b1f-d9257cc9657c$$s7547$$2c2da92cf11286ed5d9ed90bac3a4c63f$$uhttps://data.library.wustl.edu/record/103643/files/readme_doi1079366rxs103643_Liang.txt$$yREADME 000103643 909CO $$ooai:data.library.wustl.edu:103643$$pdataset 000103643 974__ $$aWashington University in St Louis 000103643 974__ $$aUniversity of Minnesota Twin Cities 000103643 980__ $$aWashU Researcher Data