000000015 001__ 15 000000015 005__ 20230824003249.0 000000015 0247_ $$a10.7936/sjqs-g430$$2DOI 000000015 037__ $$aRDM 000000015 041__ $$aeng 000000015 245__ $$aAssociating with the social amoeba Dictyostelium discoideum has different fitness costs and benefits for two facultative Burkholderia symbionts 000000015 269__ $$a2019-02-13 000000015 270__ $$mjgarcia23@wustl.edu$$pGarcia, Justine 000000015 300__ $$a16 KB 000000015 336__ $$aDataset 000000015 347__ $$bcsv 000000015 347__ $$br 000000015 520__ $$aHosts and bacteria can enter into a number of different relationships, from mutualism, where both partners benefit, to exploitation, where one partner benefits at the expense of the other. Many host-microbe relationships have been presumed to be mutualistic but frequently only benefits to the host, and not the symbiont, have been considered. However, it is necessary to understand the fitness consequences on both partners to understand how symbioses persist over time and how different host-symbiont pairings can vary in their fitness outcomes. Here we test the effect of symbiosis on the fitness of two facultative symbionts (Burkholderia agricolaris and B. hayleyella) in the social amoeba Dictyostelium discoideum. Using two indicators of symbiont fitness, growth rate and abundance, we determined the effect of D. discoideum on Burkholderia fitness. We found that D. discoideum amoebas lowered the growth rate of both Burkholderia species in liquid culture. We tracked the abundance of Burkholderia grown with and without D. discoideum in soil microcosms over a month and found that B. hayleyella had larger populations when associating with D. discoideum while B. agricolaris was not significantly affected. Overall, we find that both B. agricolaris and B. hayleyella pay a cost to associate with D. discoideum, but B. hayleyella can also benefit under some conditions. Understanding how fitness varies in facultative symbionts will help us understand the persistence of host-symbiont relationships. 000000015 536__ $$cIOS-1656756$$oNational Science Foundation Division of Integrative Organismal Systems$$qhttps://ror.org/01rvays47 000000015 536__ $$cDEB-1753743$$oNational Science Foundation Division of Environmental Biology$$qhttps://ror.org/03g87he71$$1https://www.nsf.gov/awardsearch/showAward?AWD_ID=1753743&HistoricalAwards=false 000000015 536__ $$c43667$$oJohn Templeton Foundation$$qhttps://ror.org/035tnyy05$$1https://www.templeton.org/grant/cooperation-purpose-and-the-organism 000000015 540__ $$aCreative Commons Attribution Non-Commercial Share Alike (CC BY-NC-SA) 4.0 International$$uhttps://creativecommons.org/licenses/by-nc-sa/4.0/ 000000015 650__ $$aBiological sciences 000000015 6531_ $$asymbiosis 000000015 6531_ $$aevolution 000000015 6531_ $$abacterial symbionts 000000015 655__ $$aTabular 000000015 655__ $$aCode 000000015 7001_ $$aGarcia, Justine$$1https://orcid.org/0000-0002-4183-1404$$uWashington University in St. Louis$$4https://ror.org/01yc7t268$$5ROR 000000015 7001_ $$aLarsen, Tyler$$1https://orcid.org/0000-0002-1566-4788$$uWashington University in St. Louis$$4https://ror.org/01yc7t268$$5ROR 000000015 7001_ $$aQueller, David$$uWashington University in St. Louis$$4https://ror.org/01yc7t268$$5ROR 000000015 7001_ $$aStrassmann, Joan E.$$1https://orcid.org/0000-0003-0638-8440$$uWashington University in St. Louis$$4https://ror.org/01yc7t268$$5ROR 000000015 8564_ $$98256976d-6284-4756-bc1e-0bd8c7dc3e7f$$s9254$$uhttps://data.library.wustl.edu/record/15/files/doi107936sjqsg430_garcia_README_v2.txt$$ePublic$$23b877c67f191dbb47dfca14adcaa61e4$$01 000000015 8564_ $$9f8d6b4c1-c48f-40e9-9c54-ffcd95b20102$$s15851$$uhttps://data.library.wustl.edu/record/15/files/doi107936sjqsg430_garcia_v2.zip$$ePublic$$22f4824a4a332e11dba3dde626b6a39ac$$01 000000015 904__ $$atjlarsen@wustl.edu 000000015 904__ $$aqueller@wustl.edu 000000015 904__ $$astrassmann@wustl.edu 000000015 909CO $$ooai:data.library.wustl.edu:15$$pdataset 000000015 980__ $$aWashU Researcher Data